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We derive universal scaling properties for Z k ~ actions on the circle whose 
generators have rotation numbers algebraic of degree k. As for k = 2 these 
properties can be explained for arbitrary k in terms of a renormalization group 
transformation. It has at least one trivial fixed point corresponding to an action 
whose generators are pure rotations. The spectrum of the linearized transfor 
mation in this fixed point is analyzed completely. The fixed point is hyperbolic 
with a (k-1)-dimensional unstable manifold. In the case k= 2 the known 
results are therefore recovered. 

KEY WORDS: Circle mappings; scaling behavior; algebraic rotation number; 
renormalization group. 

I .  I N T R O D U C T I O N  

There have been found quite recently remarkable universal scaling properties 
for invertible maps of the circle S 1 whose rotation numbers are algebraic of 

degree k - -  2. (1-3) These properties are of some physical interest because they 
are closely related to a possible transit ion of dissipative dynamical  systems 
from the quasiperiodic to the chaotic regime. This transit ion can be realized 

in systems with two external parameters. The main idea behind this tran- 

sition is a mechanism for destroying an original smooth invariant  2-torus 

~-2" Via the Poincar6 map construction the problem is reduced to the 
behavior of circle maps with a fixed rotation number  under continued 

iterations. It turns out that this behavior changes in an universal manner  as 

soon as the map develops some critical point, at least when the rotation 
number  is algebraic of degree k = 2. 
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The phenomenon which was found first in numerical experiments (1-3) 
can be explained by the renormalization group approach in the same spirit as 
Feigenbaum (4) proposed it for period doubling sequences of maps of the unit 
interval. In the present case this renormalization group transformation is 
expected to have exactly two fixed points in a suitably chosen function 
space. One of them is trivial and simply a pure rotation. Its existence follows 
from Herman's  results on the conjugacy problem for smooth circle 
homeomorphisms (5) and it attracts all diffeomorphisms of the same rotation 
number. The second, nontrivial fixed point on the boundary of chaotic 
behavior, whose existence is very probable in the light of the numerical 
results in Refs. 1-3, represents a circle map with some critical point. It 
cannot any more be conjugated to a pure rotation by a smooth 
diffeomorphism, instead the conjugating map, whose existence at least for 
cubic critical maps was shown by Yoccoz, (6) is in general only a 
homeomorphism. 

This picture has been shown rigorously to be true for maps with 
singularities (v) and the cubic critical case seems to be tractable also. (8) 

There are two important ingredients in the theory as developed to the 
present day. One is Herman's  result on the conjugacy problem for circle 
maps which holds for all rotation numbers in a set A (5) to which belong 
especially all algebraic numbers of degree k =  2 and the other is the 
continued fraction algorithm. Lagrange's theorem tells us that the former 
numbers are exactly the periodic points of this algorithm (by periodicity we 
understand always pure and eventual periodicity). This implies that the 
rational approximants of these numbers fulfill very simple recursion relations 
with constant coefficients from which the scaling relations, at least in the 
diffeomorphism case, follow very easily. (3) 

A natural problem then is to extend the whole theory to other rotation 
numbers, especially to arbitrary algebraic numbers. For them Herman's 
work has indeed been extended quite recently by Yoccoz.(9) He showed that 
all smooth diffeomorphisms of the circle whose rotation number fulfill some 
diophantine condition can be conjugated smoothly to a pure rotation. The 
famous Roth-Thue-Siegel theorem (l~ shows that any algebraic number 
fulfills such a condition and Yoccoz' results can be applied. From this one 
would expect that at least the diffeomorphism case of the theory described 
above can be extended to such numbers. There are indeed some preliminary 
results in this direction. (11) 

In this paper we are presenting a generalization of the theory in another 
direction. Instead of considering one circle map and its iterations, that means 
abstractly the action of the Abelian group ~ of integers on the circle, we will 
study actions of the Abelian group Z k 1 for any k >/2 and investigate their 
scaling properties. We are especially interested in those actions whose 
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generators f l  ..... fk 1 have rotation numbers algebraic of degree k. In 
extending the theory developed in Refs. 1-3 in this direction one is 
immediately lead to the problem of generalizing the continued fraction 
transformation to higher dimensions. 

Indeed, what one really needs again is an algorithm which has both 
periodicity properties for higher degree algebraic numbers and defines 
reasonable good rational approximants for them. In the case k = 2 both 
requirements are completely met by the regular continued fraction expansion, 
where the rational approximants are even the best possible ones.(12) 

There exist several extensions of the continued fraction algorithm to 
higher dimensions, (13) but unfortunately none of them is as powerful as the 
one in dimension o n e .  (14) These algorithms are closely related to the problem 
of simultaneous diophantine approximations to a set of irrational numbers, a 
subject much less understood than the approximation of a single irrational 
by rational numbers. ~ Furthermore it is known that periodicity of such an 
algorithm for algebraic numbers and best simultaneous approximations for 
them are not compatible in general. ~15'16~ Because periodicity is absolutely 
necessary at the present stage we cannot expect that we then get also best 
approximations as it was the case for k -- 2. But the last property is not so 
crucial for our purposes and reasonably good enough rational approx- 
imations do as well as we will see. 

Especially for reasons of simplicity in doing analytic calculations the 
best algorithm for our purposes seems to be the one by Jacobi and 
Perron, (~7'~8) despite the fact that the problem of periodicity of this algorithm 
for arbitrary algebraic numbers is not yet settled completely. ~19) 

Concerning the quality of simultaneous rational approximants defined 
by this algorithm the situation is rather bad as pointed out already by 
Perron. (18) This forces us to restrict the set of rotation numbers to those 
whose characteristic number is of Pisot-Vijayaraghavan (P-V) type. For 
them the approximants as provided by the Jacobi-Perron algorithm are good 
enough for our purposes. 

To derive universal scaling behavior for Zk 1 actions on the circle 
similar to the one in Refs. 1-3 for k =  2 we follow very closely the 
procedure developed in the latter case. Our discussion will be limited almost 
entirely to the case of diffeomorphisms, which means the trivial side of the 
theory. If there exists as for k = 2 also for arbitrary k a nontrivial aspect of 
the theory is at the moment completely open. To decide this one certainly 
had to perform numerical calculations as has been done for k = 2. 

In detail the paper is organized as follows: In a first section we briefly 
recall some of the properties of the Jacobi-Perron algorithm as far as we 
need them for defining the scaling relations. Most of them have been 
discussed already in Ref. 18. In the next section we consider Z ~-1 actions on 
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the circle which have been investigated before by Kopell (2~ and show 
universal scaling properties for those of them whose generators have rotation 
numbers defining a periodic point of the Jacobi-Perron algorithm. 

In a third section we derive a renormalization group transformation 
which explains in a simple manner the above-found scaling relations. The 
transformation coincides for k = 2 exactly with the one studied in Ref. 3. It 
has a trivial fixed point corresponding to generators which are pure 
rotations. It attracts all differentiable actions with the same rotation numbers 
of their generators. The spectrum of the linearization of this transformation 
around this trivial fixed point is analyzed completely in the last section. It 
turns out to be purely discrete with exactly k - 1 eigenvalues outside the unit 
disk and the rest inside it. The unstable manifold can be determined 
explicitly generalizing to arbitrary k the results for k = 2. 

Because the trivial case of generators which are diffeomorphisms agrees 
completely with the one for k = 2 we expect that also for arbitrary k there 
exist a nontrivial aspect of the theory presented in this paper. 

2. THE JACOBI-PERRON ALGORITHM 

We present the algorithm here in a form introduced by Schweiger (2~) as 
a transformation of the (k - 1)-dimensional unit cube I k_  1 c p k -  1 in complete 
analogy to the continued fraction transformation. If  x = ( x l  .... , X k _ ~ )  C I k 

then T: I k_  1 -~ I k -  1 is defined as 

T x  = ( x 2 / x  I - -  [ x 2 / x l ]  ..... x k 1 / X l -  Ix  k 1/Xl], 1 I x  1 - - [ 1 / X l ]  ) (1) 

where [x] denotes as usual the integer part of the number x. From this 
definition it is obvious that T can be considered a generalization of the 
continued fraction transformation with which it coincides in the case k = 2. 
This algorithm was set up by Jacobi (17) for k = 3 and extended to general k 
by Perron, (18) who undertook the most complete studies of its properties, The 
ergodic properties of this transformation have been investigated in Refs. 21 
and 22 and turned out to be very similar to those of the continued fraction 
transformation. 

The most important fact about T has been shown by Perron: any 
periodic point x*" of T has components x* which necessarily all belong to 
one and the same algebraic number field (~[v ~] where 0 itself is some 
algebraic number of degree ~k. If  furthermore the degree of 0 is k then the 
x*s are rationally independent and constitute together with the number 1 a 
basis of the field �9 It is not known however if indeed any such ( k -  1)- 
tupel of algebraic numbers of degree k is a periodic point of T. In the 
following we will restrict our discussion always to x C I k _  1 which are 
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periodic points of T and in fact are even fixed points. The general case can 
be treated in exactly the same way. 

A point r 1) CIk_ l is a fixed point of T if and only 
if (23) there exist integers n 1 ..... nk_ ~ E N U {0} with nk_ 1 ~> I and ni<~nk_ 1 

for all i, such that 

(nk-1 ,  nk 2 . . . . .  l / l k _ j _ i )  ~ (nj,  rlj_, ..... nl, 1) (2) 

for all 2 -G<j ~< k - 2 in the lexicographic order and such that 

(JOg = 1 / ( ( J )L I  -~- nk_ l ) (1  , co~ q- /71 ..... COL2 -1- n k - 2 )  (3) 

This means that the components co* can be expressed as 

c o * = c o * i + n l c o * i - l + . . . + n i _ l c o *  , i ,,> 2, co* = co* 

where co* is the positive solution of the equation 

(,Ok+ nlco k-1 q- . . .+  n k _ i o ) -  1 = 0  (4) 

For n = ( n ~  .... ,n  k ~)CN k-~ fulfilling conditions (2) define a mapping 
q"n: I k -1  --+ ~k-1 by 

~ ' , (x)= 1/(Xk_ ~ + n k _ l ) ( 1 , x l  + n l , . . . , x  k 2+nk_2) (5) 

This mapping can be considered a local inverse of T (Ref. 22) and it is clear 
that m* in (3) is a fixed point of ~.. Introducing projective coordinates 
x i = y i / y  k 1 < ~ i < ~ k - 1  the transformation ~t  becomes a linear transfor- 
mation in ~ k represented by the k • k matrix A.  given as 

0 0 . . . . . .  1 1 1 0 0 n 1 

A . =  0 1 0 .  0 n 2 (6) 

0 . . . .  0 1 nk_ ~ 

which is often called the companion matrix. A.  has only nonnegative entries 
and is even primitive as can be seen very easily. Therefore the 
Perron-Frobenius theorem applies in its strongest form and shows the 
existence of a largest positive eigenvalue 21 with strictly positive eigenvector 
y* = (y*,..., y*)  such that 21 > 1,12[/> ...I> 12kl for all other eigenvalues of 
A n. Our fixed point m * C I k _  1 can be expressed in terms of y* as 
co* = y * / y * ,  1 ~< i ~< k - 1. The components co [ therefore belong all to the 
algebraic number field @.[21] whose degree is ~<k depending on the 
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irreducibility properties of  the characteristic polynomial  PA(222) of the matrix 
A, .  This polynomial  reads simply 

P A ( 4 ) = ( - - 1 ) ~ ( 4 k - - n k _ 1 4 k - 1  ... n 1 4 - 1  ) (7) 

This shows especially that 2221 is a unit in �9 that  means 222 1 �9 222 2 �9 ... �9 4 k = 
( - 1 )  k+l where 42,...,4 k denote the roots of  PA(4) conjugate to 222 1 . 
Compar ing  expressions (7) and (4) we get a simple relation between co* and 
2221:222 1 -- 1/co* = 1/co*. This is a very special case of  a more general result 
about number  fields related to a periodic Jacobi -Per ron  expansion (see, for 
instance, Ref. 19, p. 109). 

Consider now any k-tupel of  nonnegative numbers q = (ql ..... qk) ~ ~k  
with I I q ll 4: 0. It follows also from Per ron-Frobenius  that  
l imm_~41 m A m q = c q * .  Specializing to integer q;s we then see that the 
vectors q(m)= A mq provide simultaneous diophantine approximations to the 
fixed point o~* in the sense that  

lim j c o *  - -  qjm)/q~m) I = 0 ( 8 )  
m ~ c o  

for all 1 4 i ~< k -  1, where we denoted the components  of  q(m) by ql m). It 
follows from the work of Perron (18) that  for large enough m 

l o f t  q tm)/'~(m)l - ~ /~k ~<cL42/24~L m, l ~ i ~ k - 1  (9) 

and that there exists at least one index j such that 

/ CO.$ --  n(m)/.,v(m) C t J ~j , t t k  ~ 142/411 m 

for some constants c and e ' .  In the above expressions 222 2 denotes the second 
highest eigenvalue of A ,  in absolute value. This shows that contrary  to the 
case k = 2, where 222 2 is always smaller than one in absolute value, the 
approximations q(m) are in general not very good for arbitrary k, because 

lira Iq(~m)co * -- qlm)[ :~ 0 (10) 
m ~  

in general. Because the property limm~ ~ q~m)co, -qi-(m)= 0 is absolutely 
crucial for deriving the scaling properties we have to restrict the discussion 
to those ns which have this last property.  F rom (9) it follows that  a 
necessary and sufficient condition for this to hold is that  122221 < 1. Then all 
the other roots 222 3 ..... 4 k of  the characteristic polynomial  PA in (7) besides the 
highest root 222 1 lie inside the unit disk. The number 4 1 is then called a 
P iso t -Vi jayaraghavan  (P-V)  number,  tl~ This situation happens for 
instance for k = 3 when /]'2 and 222 3 are complex conjugate. 
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In the following we are especially interested in those rational approx- 
imants q(m) defined by the initial vector q(0) = (0,..., 0, 1). For  them we have 

Tm(q]m) /q (km) ' " ' ,  "~k-~ l,"lk/m(m)'~) = (0  ... . .  O) (11) 

for all m/> 0. In the case k = 2 these number q(m) a r e  just the generalized 
Fibonacci  numbers defined by the recursion relation q}m) = q}m 2) q_ nq}m-~) 

which have been used in Ref. 3 for deriving the scaling relations. 
In the case of  arbitrary k we proceed as follows: 
Define a transformation T ,  for n like in (2) as 

Tll (X ) = ( x 2 / x  1 - rl 1 , . . . ,  X k _ l / X  1 - -  n,_  2, I / x ,  - nk_ 1) ( 1 2 )  

It is just the Jacobi -Perron  transformation T in local coordinates and defines 
there the inverse of  the map ~,. in (5). Therefore TntO* = r for the fixed 
point co*. Denoting the point T.~x by x (m) we can write its components xl  m) 
as the quotient of  two linear forms 

XI m)= ~" a !m)x . - -C l  , -- a~m]xj--c(km' (13) 
j = l  

Obviously the numbers a! m) and el m) ,,j are integers and fulfill the following 
recursion relations: 

a(m+ I) ..~(m) ~ r~ ,.~,(m) 
i , j  ~ - - ~ i +  1,j ~ '~i ~ l , j  

a(m+l) = a(rn) n a (m) 
k 1,j k.j + k - ,  l.j 

a(m+ 1) ~ a(m) 
k , j  1 , j '  

respectively, 

l <<. i <~ k -  2~ l <~j <~ k -  i 

1 ~ j ~ k -  1 

c ( m +  1) ~(m) 
i : -- t: i+ l "~- n i c ]  m) 

c (m +  1) ~ C(k m) k--1 ~1- n k _ l C ~  m) 

c ( m +  1) = c~m), 1 4 i 4 k - - 2  

Relations (14) and (15) can be represented by a k • k matrix B .  
explicit form is 

n 1 --1 0 ... O 

n 2 0 --1 0 ... O 

B n =  
Zk-2 0 . . . .  1 0 

r/k_ l 0 ... 0 1 

1 0 ".. 0 

(14) 

(15) 

whose 

(16) 
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The numbers cl m) are closely related to the approximat ion v e c t o r s  q(m) as 
can be seen from relation (12), which leads to 

k-1 
clm) 1/q(m) ~ ,:,(m)~(m) 1 ~ i ~< k -  1 (17) ~- ~ i , j  "lj 

j = l  

respectively, 

k-1 
C(k m) 1/q(km-1) Z o(m).~(m 1, 

j = l  

This shows that for 1 ~< i ~< k the vectors -in(m) C Z k defined as (u i-('~)aM = ui,]-(m) 
for 1 ~<j <~ k - 1 and (alm))k = el m) define Diophantine approximations to the 
linear form 

k - I  

l(x)= • (18) 
j = l  

For this we have to show that for all 1 ~< i ~< k we have 

lira t/(alm))l = 0 
m-~oo 

But 0~* being a fixed point of  T ,  we have trivially for all m and all 
l ~ i ~ k - 1  

Z ~(m)..,:~ __ elm) ,.~(m).,,* ( 1 9 )  - . i  = -k,jwi - c y ,  
j = l  "= j 1 

We therefore have only to show that 

lim II(a(k~))l = 0 
m --*oo 

Using expression (17) we can write this as 

k-1  
l(a(k~)) = 1/q(km ~) ~ t'tk,j~(m){'~(m-k~lk I)(D>~j __ q ~ m - 1 ) )  

j = l  

To find the large-m behavior of /(a~ m)) we need to know therefore the 
behavior  of  the numbers a (m) for large m. This is obviously determined by k , j  

a (m)  the spectral properties of  the matrix B ,  in (16) because k,j = (Bma~~ �9 
The characteristic polynomial  of  B .  can be calculated explicitly to give 

P~(~) = (--2) k + nl(--,~) k-1 + . . . +  nk_l(--;,  ) -- 1 (20) 
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Comparing this with the characteristic polynomial PA of A.  in (7) then 
shows that the spectrum a(B.) is just given as 

p~a(B.)<=~-p 1 ~ o(An) (21) 

The highest eigenvalue in absolute value of B ,  which determines in general 
the behavior of a!m. ) is therefore the eigenvalue p~ = - 1 / 2  k. This together I,J 

with Perron's results (9) concerning the approximation vector q(m) shows 
that for large m 

[l(a(km))l~ClA~.,~3.....,~k iI ~, & ~ 4  (22) 

respectively, 

[[(a~m))[~C[~2.~3l m for k = 3  

Because 21 was by assumption a P-V number the right-hand side vanishes 
exponentially fast with increasing m. The above estimates show also that the 
approximation vectors a~ m) for the form l are also not very good in general. 
Only in the case k = 3 and for complex conjugates roots 22, 23 we get the 
best approximations ~15) 

I/(a(m))l ~ c/max laJm)[ 2 
l <~j<k 

In the general case one gets only 

]l(a(m))r~c/max1<j<k I aj(m)] 

where ct is determined by 12~. 23. . . . .2k_l]=O(12k]  ~) and hence can be 
rather small. Nevertheless property (22) will allow us to derive universal 
scaling behavior for Y k-1 actions on the circle. 

3. SCALING PROPERTIES OF ~k 1 ACTIONS ON THE CIRCLE 

A ~k--1 action on the circle is defined by a homomorphism (p of the 
Abelian group zk- I  into the group of all orientation-preserving 
diffeomorphisms Diff(S1) of the circle S1, such that the induced mapping 
q~:Z k-1 •  1 defined by (~(g,x)=o(g)x is differentiable. Such an 
action is obviously completely determined by its generators f~ ..... fk-1 E 
Diff(S~) where f~ = q)(gi) and the gi, 1 ~< i ~< k -  1, generate the group 2 k-~. 
The differentiable actions of any noncompact abelian group on S~ have been 
discussed by Kopell.(20) Because the generators f l  ..... fk-I  commute they all 
belong to the intersection O~-1 ~ C(fi) where C(fi) denotes the centralizer of 

822/38/3-4-24 
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f~ which is just { g E  D i f f ( S 1 ) : f o  g =  gof~}.  It was shown in Refi 20 that  
C ( f ) ~ _ S O ( 2 )  if the rotation number  p of f is irrational and f is 
diffeomorphic conjugate to the pure rotation Ro(i). In this case C ( f )  is 
simply { g = h o R~ o h 1, a C (0, 2~r] }, where f = h o Rocr o h -  1. Of special 
interest for us are those actions whose generators f,. have rotation numbers  
P(fi)  which define a fixed point r of  the Jacob i -Pe r ron  t ransformat ion T 
and are therefore algebraic of degree k. From the results of  Kopell  and 
Yoccoz it then follows that f / =  h o Ro,; o h -1 for all 1 ~< i ~< k - 1. 

As usual we work in the following with a lift J~ D ~ ~ of any circle 
homeomorph ism f : S  1 ~ S  1, that means a monotonic  increasing 
homeomorph i sm of the real line with the property 

jT(x + 1) = f ( x )  + 1 (23) 

It is clear that  such a lift is determined by f only up to an integer constant 
but what we are going to do does not depend on this constant  and defines 
therefore properties o f f  itself. We will therefore identify from now on f and 
the lift J~ To define then the scaling relations for an Z k 1 action o n  S 1 with 
generatorsf~,. . . , fk_ ~ we set for m >/ 1 

"~(m-1, : =  - ( f l  ~m~ . . . .  o fk~k,mk~ 1(0) __ r (24) 

where the integers a~]  respectively c~ m, are defined in (14) and (15) with 
initial values 

al~ = 6,d, l K i K k, l K j  K k - 1  
(25) 

c(0)=O, l ~ < i ~ < k  1; c(2 ) 1 

Fur thermore  define the functions ~Im)(x) for 1 ~< i ~< k as 

r  o!m, _o~m, _ . = 1 /2(m_l ) ( f , ' , '  . . . . .  Jk'zk{l~lt(m i)X)--Cl m)) (26) 

Then obviously 

~(m)(o) = --1 (27)  

for all m ~> 1. Using the bound (22) one shows easily that  

I;t(~) I ~< c I~-~" ~-, ".-." ~tk_, q" (28) 

where the constant e depends only on the diffeomorphism h. By exactly the 
arguments used in Ref. 3 it then follows that  for all Z k-1 actions on S 1 with 
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generators f .  = h o R,o 7 o h -~ the following limits exist and do not depend on 
h: 

lim ~Im)(x) = Ro, ,  (x),  1 ~ i ~ k - 1 
rn ~ cx3 

lim ~ ( m ) ( x )  = X - -  1 
tit +oo 

(29) 

From relations (14) and (19) it also follows furthermore that 

lim ( , ~ ( m ) / ~ ( m _  1)) = - - 0 9 1  W" = - - 1 / / ] ' 1  ( 3 0 )  
m ~ o o  

independent of h. 
Relations (29) and (30) define universal scaling behavior for Z ~-~ 

actions on the circle. In the case k = 2 these scaling relations coincide 
exactly with the ones found in Refs. 1-3. 

To see this one only has to convince oneself that in this case the 
numbers  a (m) and a (m) are exactly the best approximants q ~  and q ~ m - l )  1,1 2,1 
defined by the continued fraction transformation and similarly C{ rn )=  q l  m -  1). 

In the case k = 2 the matrices A,  and B,  in (6), respectively (16), have the 
form 

and generate indeed the best approximants. 
In complete analogy to the case k = 2 we can ask also for arbitrary k 

for further scaling relations. Remember, that in the former case for instance 
the numbers T (m) defined by the condition (R,(m) o f ) q~" (O)  = ql m) scaled like 
limm_~oo [T(m)/T (m-l) ] =--O)1~. (3) In our general case of arbitrary k one would 
then expect that also the numbers rl m) defined by the conditions 

a! m) 
(R.].,, o f,)al.m~ ' o ... o (RT:~m o f k - i )  ,.k-l(O) = -ie(m) (31) 

1 ~< i ~< k -  1, should also show some scaling behavior. This is however not 
the case in general as we will show now. Consider for this the special case 

f , . = R ~ ?  Then one can solve the equations (31) for the ~i-(m) and gets 
Y~_-;  al~)(co * + T~ m)) = C~ m) with the solution 

T(m) __ ~ ( m ) l ~ ( r n )  
j - -  - - ( J ) j  q -  t t j  I L l k  

Therefore we get for the ratio c!m)/r{ m-D the expression vj  / ~j  
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The behavior of the term q(k~)CO * _ qJ~(m) for large m is determined by one of 
the eigenvalues 22,..., 2 k of A .  depending on j. If  this eigenvalue, however, is 
complex then also the complex conjugate eigenvalue contributes above and 
the limit does not exist and is oscillating instead. The limit exists on the 
other hand if the relevant eigenvalue is real and we get a scaling law 

lim (m) (m- 1) 7jj / r j  = 2 (J)/21 (32) 
m --*o0 

where -2 (i) is the relevant eigenvalue. This shows that depending on j we get 
either a limit or the limit does not exist. In the case k = 2 there exists only 
the eigenvalue 21 which moreover is always real. For k = 3 both situations 
can already appear: either 22 is complex and the limit does not exist or/]`2 
and/]`3 are real and give rise to two different values for the limit in (32). This 
happens for instance for n = (9, 15). We will see next how this is reflected in 
the fixed point structure of the renormalization group transformation 
belonging to these scaling relations. Let us remark that a standard argument 
shows that the above properties hold for all h. 

4. A RENORMALIZATION GROUP TRANSFORMATION FOR 
ARBITRARY k 

To derive this transformation we follow the standard procedure as used for 
instance in Ref. 3. Take the functions ~I m) defined in (26) and look for a 
recursion relation in m. Using relations (14) and (15) one sees easily that 
every ~I re+l) can be rewritten as a functional of the {~)m)}, namely, 

~(m+ 1)(X ) = 2( m -  l ) / 2 ( m ) ( ~ m ) ) n i  o l~(m) t % i + l ] - l ( 2 ( m ) / 2 ( m  1)X), l ~ i < ~ k - 2  i 

~(m+ 1)/,~] - -  ] / ]  (p(m)]nk-i  (m) k-1 V~J--'~(m-W'~<m)~'~l J o~ k (2(m)/2(,~_1)X) (33) 

~(k m+ 1)(X) = 2(m__l)12(m)~l(~,(m)/2(m 1) X) 

where ~(km)(o)=--1 for all m. 
Performing the limit m-~ oo in (33) by remembering that at least for 

certain f,. it really exists we get a transformation ~ '  as 

( i / 2 )  ~'~' o ~i+ '~(2x) ,  1 ~ i ~< k - 2 

~9 i~(x)  = ( i / 2 )  ~1 k 1 o ,~k(2X) (34 )  

(1 /2 )  ~1 (2X) 

with 

2 = -~1(o) 
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In the case k = 2 the transformation ~ is just a little modification of the one 
used in Ref. 3: 

: ~  ~ ( x ) = T  ~,(,tx) ' 

We see that the transformation ~ acts in a space of k-tupels of functions 
~(x) on the real line. In analogy to the case k = 2 one would like to interpret 
the functions ~ = (~1,..., ~k) if possible as a (k - 1)-tupel of circle mappings. 
It turns out that this can be done indeed. To give the construction let us 
consider the space D ,  of k-tupels ~ = (~1,-.., ~k) of monotone increasing 
diffeomorphisms ~i of the real line such that 

(D1) 

(D2) 

(D3) 

(D4) 

for all l < ~ i < ~ k - 2  

~ ( o )  = - 1 ,  4i o ~ ( o )  < o < ~i(o), 1 ~<i~< k -  

~7 i O ~i-21(0 ) < 0 < '~lt ~ n i + l  o ~i-+ll(0), ~7 k 1(--i) < 0 < ~7 k ~+~(--1) 

~, o ~+'1(0) = ~/-+1 o ~ ( 0 )  

(35) 

Properties (35) allow us to associate to every ~ C D ,  a ( k - 1 )  tupel 
f~ ~ = ( f l  ..... f k -1)  of circle homeomorphisms and a rotation vector p(~)= 
(p(f~),...,p(f~_~)) in the following way: 

Define 

t ~i(x), ~i ~ ~k(0) ~< X ~< 0 (36) 
f~(x) := t~i ~k(X), 0 <~ X = ~i(O) 

Because of (D1) the interval [~i ~ ~k(0), ~i(0)] is not empty and contains the 
point 0 in its interior. Property (D2) shows thatf~(~i o ~k(0))= f~(~i(O)). By 
identifying therefore the two endpoints of the interval [~i ~ ~k(0), ~i(0)] we 
get a homeomorphism of the circle to which we can associate also a rotation 
number p(f~). The circle homeomorphisms f i :  $1--' S1 can be embedded 
trivially into the space D n in defining ~ ( x ) = f / ( x )  for 1 ~< i < ~ k - i  and 
~{(x) = x -  1. To be precise the rotation numbers p(f/) must also fulfill 
certain conditions so that properties (D1)-(D4) are true. It is clear that 
f y ( x ) = f i ( x  ) in that case and therefore p ( ~ 0 = p ( f ) .  Now consider the 
special case where f =  (fl ..... fk l) is given by f / = h  o Roq o h -1. Then a 
simple calculation shows that 

~m~f=~(m) (37) 

where the vector ~(m) has been defined in (26). This shows that the transfor- 
mation ~ in (34) reproduces exactly the iterations on the ( k - 1 ) - t u p e l  
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(fl, ' '"fk ,) we are interested in. This remark also shows that the point 
~*(x )  = (R,,](x),...,R,,** ~ ( x ) , x -  1) is a fixed point of ~ '  and that all points 
~ ( x ) = ( h o R ~ o ; o  h - l ( x )  ..... h o  R,,~_ o h ' ( x ) , x -  1) belong to the stable 
man'ifo f t l d  o hxs fixed]: point. 

A straightforward calculation shows that conditions (D3) and (D4) 
make sure that ~ fulfills conditions (D1) and (D2) for any ~ E D n and 
posseses therefore a rotation vector p(~2~). What is the relation between p(~) 
and p ( ~ ) .  Let us consider the case where ~(x )=(R~ ,~ (x ) , . . . ,R ,o  ~ l(x) ,  
x - 1 ) C D  n. Condition (D1) simply says that 0 < c o  i <  1 for all 1 ~ i ~ <  
k - 1. Condition (D3) on the other hand tells us that nk_ , < I/e), < n~_, + 1 
and n i < coi+l /col  < h i 4 -  1 for I < ~ i ~ k - 2 .  

For ~ ( x )  we get 

~ ; ~ i ( X )  = X -}- COi+ I/O), - -  hi, for 1 <~ i <~ k - -  2 

~ k _ , ( X )  = X  + 1/co, - -  rtk_ I 

~9~k(x) = x -- 1 

But this shows that p ( ~ )  = (co2/col - n, ..... cok-1/co, -- nk -2 ,  1~col -- nk_ , )  
o r  

p(fl2~) = ( p ( f  ~ ) / p ( f  ~) -- n, ,..., p ( f  ~_ , ) l p ( f  ~) 

- nk_2,  1 / p ( f ~ )  - nk_~) (38) 

This discussion also shows that the ( k -  1)-dimensional manifold W~(~ *) = 
{~: ~i(x) = Ro,~(x), ~k(x) = x - 1 :coi C ~ } is left invariant under the transfor- 
mation ~9~. We will see immediately that W~(~ *) ~ D ~  is just the unstable 
manifold of the fixed point ~* in D, .  To see this we have to investigate the 
spectrum of the linearization D ~ ( ~ * )  of the transformation ~q~ in the point 
~*. It turns out that exactly the same technique can thereby be applied as it 
was used in Ref. 3 for the special case k = 2. 

In a first step one simplifies the transformation ~ in (34) in such a way 
that the rescaling factor 2 becomes constant. For this purpose one defines 
two auxiliary transformations ~ and ~ 2  in suitably chosen spaces as 
follows: 

with 2 =  -~k(O) and 

with 2 '  = - i f*  (0) = -co*.  

�9 ~!~l~(X ) = (1/~") ~(,~X) (39) 

r o r 

r 

1 = i = k - 2  

(4o) 
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A s  in Ref .  3 o n e  s h o w s  t h a t  ~ = ~ 1  o ~3~2 = ~ 1  o ~ t  2 o ~;~1 a n d  ~'~ = 5~ 1 . 
Furthermore ~ l ~ *  =~922~* = ~*. As for k =  2 it turns out that any eigen- 
value of D~2(~*) is at the same time an eigenvalue with exactly the same 
multiplicity of D~2(~* ) and any eigenvalue 2 :/: 1 of D~2(~* ) is an eigen- 
value of D ~ ( ~ * ) .  Therefore the spectrum of D~2(~*)  determines the one of 
the operator D ~ ( ~ * )  we are looking for. For the sake of simplicity we 
restrict our discussion from now on to the case k = 3 but mention that all 
arguments can be carried through for arbitrary k, the formulas get only 
slightly longer. The derivatives of the transformations ~ i  and "r in the 
fixed point ~* can easily be calculated: 

(D~I(~*)  h)(x) = h3(O ) ~ + h(x) 

where ~o = (co*, co*, --1), respectively, 

(41) 

/ '/1 1 

I ~ - I  ! 
(D~?2(~*)g)(x)=(1/2*) ~ g3(2*x)+ j~o gl(2*x-- l +jco*) J 

\ -g~(;~*x) / 
(42) 

The operator D~2(~* ) can be treated very easily; in fact it is a kind of 
composition operator which we discussed some time ago in Ref. 24. When 
restricted to a certain B space of holomorphic functions it defines a nuclear 
operator with very simple spectral properties. To determine its spectrum 
which obviously consists only of eigenvalues one writes down the eigenvalue 
equation for gl(x). This gives 

n]--I 

g,(x) = (I/J.*) ~ g,(.,].*x -- co* q-Jco*1) -- 1/(j,;*2) 
j=0 

n2--1 
X ~ g ~ ( 2 * E x - 2 * c o * -  1 + j c o * ) -  1/(222*3)g~(2*3x-2*:co2*) 

;'=0 (43) 

But this can be solved by the ansatz gl(x)= ~-=o aj xJ which leads to the 
eigenvalue equation 

/;I. =.~* N-~rt 1 -- 1/.~ 2*2~x- '~nz-  1//]. 2 ~:~3IN-1) 

Setting therefore 2 = 2"N-12 ' we get 

2'=nl--(1/2')n2--1/2 '2 or 2 ' 3 - - n , 2 ' 2  + n 2 2 '  + 1 = 0 
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Comparing this with equation (4) we see that the solutions of the above 
equation are exactly - -co* , -o9 ' , -09"  where co', co" are the conjugates of the 
algebraic number co1" --09*. Therefore the spectrum a(D~z(~*))  is given by 
the numbers 

{(--1) n o9"n-160 *, (--1)n(.o*n-l(.o ', (--1)noggn-lcJ) "" n E IN U {0}} (44) 

Only five of these numbers are bigger than one in absolute value: 1, o9"-lo9',  
co*-1o9",-o9' ,-co ". Because leo*co'co"l= 1 we have in fact Ico*co'[ < 1, 
Io9"o9"1 < 1. 

It turns out that only two of the above numbers are really eigenvalues 
of the operator D ~ ( ~ * )  when ~ is considered as operating in the space D,.  
This means namely that the eigenfunctions have to be tangent to D,.  If we 
denote the tangent vectors to the manifold D .  by g(x) = (gl(x),..., gg(x)) then 
they fulfill the conditions (at the fixed point ~*): 

gk(0)  = o 

gk(O) +gi(--1)  =gk((O*) +gi(0),  1 ~< i~< k - -  1 (44) 

gl(--og*+l)--gi+l(--ogi*+l)=gl(O)--gi+l(O*--COi*+l), l <~ i ~ k - -  2 

Let us restrict our discussion from now on again to the case k = 3. The case 
of arbitrary k can be handled in exactly the same way. If 2 is one of the 
eigenvalues 1, co'/og*,co"/co* o fD~2(~*  ) the corresponding eigenfunction 
has the form (1) 

ga(x) = n I -- 22 '  (45) 

I / (22 . )  

The corresponding eigenfunction h 2 to exactly the same eigenvalue for the 
operator Dc~(~*) can be obtained simply by applying the operator D~r ) 
to ga. This gives 

1 -- 1/2 ) 
ha(x ) = n,(1 -- 1/2) + o9"(1 - 1/22) (46) 

0 

For 2 = 1 we see that hl(X ) = 0 and 2 = 1 is not an eigenvalue of D ~(~* ) .  
On the other hand for 2 = o9'/o9" or 2 = co"/(9" the functions ha(x ) turn out 
to be indeed eigenfunctions of D ~ ( ~ * )  tangent to the space D .  in the point 
~* because obviously conditions (44) are then satisfied. In a next step one 
has to determine in complete analogy the eigenfunctions corresponding to the 
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eigenvalues 2 = - c o ' ,  respectively, 2 = - o ~ " " .  In this case the eigenfunction 
g2(x) has the form 

x(1/  2 - + 2 + n /X) - 

ga(x) = + 1 / (22" )n2 (n2 -  1) 

(1/4) x + 

where a is determined uniquely by Eq. (43). The corresponding eigenvectors 
h a of Dc~(~*) then read as follows: 

/ x + a + \ 

I x ( 1 / 2 2  -- 1/2) + co*a/(22*) + a(l/(2X*) 2 + nz / )  0 
/ 

ha(x) = ~ + co*/(22) n2(n 2 -- 1) 

\ (1/2) x 

A straightforward calculation shows that conditions (44) are not satisfied by 
these h a. Therefore the eigenvalues 2 =--co '  and )~ =--co" do not belong to 
a (D~ ( ~ * ) )  when the operator ~ is considered as acting in the space D..  
But this shows that only the eigenvalues co'/co* and co"/co~* lie outside the 
unit circle and lead therefore to a two-dimensional unstable manifold W~(~ *) 
of the trivial fixed point ~*. This is exactly what we expected from the 
discussion of the scaling behavior of the numbers v~ m) in (32). This result for 
k = 3 can now immediately be extended to arbitrary degree k. The unstable 
manifold of ~* has there dimension k -  1 and is explicitly given by 

W~(~*) = {~ C D , :  ~ ( x )  = x -  1, ~i(x) = x + ci, 1 4 i ~ k - 1, ci ~ ~ } 

The case k = 2 therefore fits perfectly into our general theory. 

R e m a r k s .  The above results for the trivial fixed point ~* can 
presumably be made completely rigorous in exactly the way done for k = 2 
in Ref. 7. Concerning the existence of a second nontrivial fixed point a little 
problem arises through the fact that the action of ~ involves the inverse 
functions ~7~(x). As soon as there is a critical point in one of the functions 
~i its inverse is not anymore everywhere differentiable and the operator 3 
leads immediately outside the space D .  which contains only k-tupels of 
differentiable functions. A second nontrivial fixed point of ~ can therefore 
only exist in a space of functions which are less regular. To get some feeling 
in this direction, however, one should do computer calculations in iterating 
some ( k -  1)-tupel of functions (fl , . . . , fk-1) with f / =  h o Re,; o h 1, where h 
i sno t  a diffeomorphism. Iff~ for instance has rotation number P ( f l ) =  co* 
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and one cubic critical point then there exists such a homeomorphism 
conjugating it to the pure rotation R o,; by a recent result of Yoccoz. (11) 

Another interesting problem would be to extend also the work of 
Manton and Nauenberg (25'26) to 2 k-I  actions in the complex plane in the 

same way we did here for such actions on the circle. 
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